The Projected Generalized Sylvester Equations: Numerical Solution and Applications
نویسندگان
چکیده
In this paper we consider the numerical solution of large-scale projected generalized continuous-time and discrete-time Sylvester equations with low-rank right-hand sides. First, we present the results on the sufficient conditions for the existence, uniqueness, and analytic formula of the solutions of these equations. Second, we review the low-rank alternating direction implicit method and the low-rank cyclic Smith method for solving the projected generalized continuous-time Sylvester equation, and propose a numerical method for the projected generalized discrete-time Sylvester equation. Third, we show that the solutions of these two equations are useful for computing the HL2 inner product of two descriptor systems. Finally, we present some numerical experiments. Key–Words: Projected generalized Sylvester equation, Matrix pencil, Alternating direction implicit method, Smith method, Descriptor system, HL2 inner product
منابع مشابه
On the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملAn accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملTheoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کاملA Schur Method for Solving Projected Continuous-Time Sylvester Equations
In this paper, we propose a direct method based on the real Schur factorization for solving the projected Sylvester equation with relatively small size. The algebraic formula of the solution of the projected continuous-time Sylvester equation is presented. The computational cost of the direct method is estimated. Numerical experiments show that this direct method has high accuracy. Keywords—Pro...
متن کاملOn the Numerical Solution of Large Scale Sylvester Matrix Equations
This paper presents equivalent forms of the Sylvester matrix equations. These equivalent forms allow us to use block linear methods for solving large Sylvester matrix equations. In each step of theses iterative methods we use global FOM or global GMRES algorithm for solving an auxiliary block matrix equations. Also, some numerical experiments for obtaining the numerical approximated solution of...
متن کامل